Identification of nanometre-sized ultra-high molecular weight polyethylene wear particles in samples retrieved in vivo.

نویسندگان

  • L Richards
  • C Brown
  • M H Stone
  • J Fisher
  • E Ingham
  • J L Tipper
چکیده

Nanometre-sized particles of ultra-high molecular weight polyethylene have been identified in the lubricants retrieved from hip simulators. Tissue samples were taken from seven failed Charnley total hip replacements, digested using strong alkali and analysed using high-resolution field emission gun-scanning electron microscopy to determine whether nanometre-sized particles of polyethylene debris were generated in vivo. A randomised method of analysis was used to quantify and characterise all the polyethylene particles isolated. We isolated nanometre-sized particles from the retrieved tissue samples. The smallest identified was 30 nm and the majority were in the 0.1 microm to 0.99 microm size range. Particles in the 1.0 microm to 9.99 microm size range represented the highest proportion of the wear volume of the tissue samples, with 35% to 98% of the total wear volume comprised of particles of this size. The number of nanometre-sized particles isolated from the tissues accounted for only a small proportion of the total wear volume. Further work is required to assess the biological response to nanometre-sized polyethylene particles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generation of a large volume of clinically relevant nanometre-sized ultra-high-molecular-weight polyethylene wear particles for cell culture studies

It has recently been shown that the wear of ultra-high-molecular-weight polyethylene in hip and knee prostheses leads to the generation of nanometre-sized particles, in addition to micron-sized particles. The biological activity of nanometre-sized ultra-high-molecular-weight polyethylene wear particles has not, however, previously been studied due to difficulties in generating sufficient volume...

متن کامل

The biological response to nanometre-sized polymer particles

Recently, nanometre-sized UHMWPE particles generated from hip and knee replacements have been identified in vitro and in vivo. UHMWPE particles in the 0.1-1.0μm size range have been shown to be more biologically active than larger particles, provoking an inflammatory response implicated in late aseptic loosening of total joint replacements. The biological activity of nanometre-sized particles h...

متن کامل

Analysis of polyethylene wear debris using micro-Raman spectroscopy: a report on the presence of beta-carotene.

This paper describes micro-Raman spectroscopy of ultra-high molecular weight polyethylene wear debris isolated from revised knee replacements. The novel application of micro-Raman spectroscopy to the analysis of in vivo-generated wear debris was used to evaluate the chemical nature of individual, retrieved polyethylene particles. The analysis revealed the presence of beta-carotene on particles ...

متن کامل

Wear of retrieved UHMWPE hip liners.

After the gamma-irradiation sterilization, the most widely used orthopaedic grade polymer bearing liner material for the total joint replacement, ultra-high molecular weight polyethylene (UHMWPE), degrades through the progressive in vivo oxidation. The oxidative degradation makes UHMWPE brittle and leads to reduction of its mechanical properties. In this study, the effect of the in vivo post-ir...

متن کامل

Nanomechanical and surface properties of rMSCs post-exposure to CAP treated UHMWPE wear particles

UNLABELLED Wear debris generated by ultra-high molecular weight polyethylene (UHMWPE) used in joint replacement devices has been of concern due to reductions of the implant longevity. Cold atmospheric plasma (CAP) has been used to improve the wear performance of UHMWPE. Our aim was to investigate the elastic and adhesive properties of rat mesenchymal stem cells (rMSCs), through AFM, after expos...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of bone and joint surgery. British volume

دوره 90 8  شماره 

صفحات  -

تاریخ انتشار 2008